Section courante

A propos

Section administrative du site

La fabuleuse fonction d'«Ackermann» de 1926, laquelle, lorsqu'on met des chiffres de plus en plus gros dans le premier paramètre, augmente beaucoup plus vite que l'exponentiel ! Sa formule est cité dans presque tous les livres de récursivité, mais paradoxalement, son nom, Wilhelm Ackermann, est difficile à trouver ! Voici un code source C effectuant le calcul de la fonction d'«Ackermann» dans ses positions inférieures :

  1. #include <stdio.h>
  2. #include <stdlib.h>
  3.  
  4. int Ackermann(int M,int N) {
  5.       if(M == 0) return N+1;
  6.       else {
  7.         if(N == 0) return Ackermann(M-1,1);
  8.               else return Ackermann(M-1,(Ackermann(M,N-1)));
  9.       }
  10.     }
  11.  
  12. int main()
  13. {
  14.     int I,J;
  15.     for(I=1;I<=2;I++) for(J=1;J<=10;J++) {
  16.        printf("Ackermann(%i,%i)=%i\n",I,J,Ackermann(I,J));
  17.     }
  18.     return 0;
  19. }

on obtiendra le résultat suivant :

Ackermann( 1, 1)= 3
Ackermann( 1, 2)= 4
Ackermann( 1, 3)= 5
Ackermann( 1, 4)= 6
Ackermann( 1, 5)= 7
Ackermann( 1, 6)= 8
Ackermann( 1, 7)= 9
Ackermann( 1, 8)= 10
Ackermann( 1, 9)= 11
Ackermann( 1, 10)= 12
Ackermann( 2, 1)= 5
Ackermann( 2, 2)= 7
Ackermann( 2, 3)= 9
Ackermann( 2, 4)= 11
Ackermann( 2, 5)= 13
Ackermann( 2, 6)= 15
Ackermann( 2, 7)= 17
Ackermann( 2, 8)= 19
Ackermann( 2, 9)= 21
Ackermann( 2, 10)= 23

Voir également

Science - Mathématique

Dernière mise à jour : Samedi, le 22 août 2015